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ABSTRACT: High-throughput experimental methodologies are capa-
ble of synthesizing, screening and characterizing vast arrays of
combinatorial material libraries at a very rapid rate. These method-
ologies strategically employ tiered screening wherein the number of
compositions screened decreases as the complexity, and very often the
scientific information obtained from a screening experiment, increases.
The algorithm used for down-selection of samples from higher
throughput screening experiment to a lower throughput screening
experiment is vital in achieving information-rich experimental materials
genomes. The fundamental science of material discovery lies in the
establishment of composition−structure−property relationships, moti-
vating the development of advanced down-selection algorithms which consider the information value of the selected
compositions, as opposed to simply selecting the best performing compositions from a high throughput experiment.
Identification of property fields (composition regions with distinct composition-property relationships) in high throughput data
enables down-selection algorithms to employ advanced selection strategies, such as the selection of representative compositions
from each field or selection of compositions that span the composition space of the highest performing field. Such strategies
would greatly enhance the generation of data-driven discoveries. We introduce an informatics-based clustering of composition-
property functional relationships using a combination of information theory and multitree genetic programming concepts for
identification of property fields in a composition library. We demonstrate our approach using a complex synthetic composition-
property map for a 5 at. % step ternary library consisting of four distinct property fields and finally explore the application of this
methodology for capturing relationships between composition and catalytic activity for the oxygen evolution reaction for 5429
catalyst compositions in a (Ni−Fe−Co−Ce)Ox library.

KEYWORDS: materials genomes, high-throughput experimentation, combinatorial science, informatics, down-selection, clustering,
functional relationships, multitree genetic programming, information theory

1. INTRODUCTION

The main pillars in the realization of materials genome-based
discovery are experimentation, first-principles computations
and materials informatics. Several research efforts have focused
on developing theoretical materials genomes for discovery of
materials using first-principles calculations.1−3 Materials in-
formatics methods that efficiently mine data from elemental
properties, experimental data and first-principles computations
have also been developed and demonstrated as a framework for
discovery of new materials.4,5 Additionally, high-throughput
and combinatorial experimentation approaches have led to
discovery of new materials for several applications.6−8 However,
there is limited research toward developing a framework for
combining informatics methods and high-throughput exper-
imentation strategies to create information-rich experimental
materials genomes that accelerate materials discovery and allow
efficient integration with large scale computational materials
science repositories.1,9

High-throughput (HiTp) experimentation typically involves
the coarse, rapid measurement of a property of interest for each
sample in a material library. Ultimately, the materials of greatest
interest are selected for investigation using traditional
techniques, which have much lower throughput. To transition
between these two extremes, experiments with intermediate
throughput and commensurate down-selection rates can be
introduced to create a tiered screening scheme. Appropriate
down-selection methods are essential to ensure generation of
information rich experimental data that lead to knowledge and
discovery. While a combinatorial material library may include
variation of a number of process parameters such as synthesis
temperature or processing parameters,10,11 we continue this
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discussion in the context of composition libraries and note that
the discussion is equally applicable to other parameters.
For characterization of composition-property relationships in

mission-driven research, the property of interest is typically a
performance metric for a target application. The relationship of
this property to composition may be governed by any number
of chemical and physical attributes, such as phase, crystallinity,
microstructure and surface composition etc. While develop-
ment of HiTp materials characterization12−14 and related
analysis techniques15,16 is an active field of research, down-
selection of samples from a HiTp screen for performing
characterization is generally necessary. For a given composition
region, a systematic variation in a materials characterization
attribute may lead to a corresponding variation in the
performance metric. By partitioning a composition space into
regions which exhibit systematic trends in performance,
samples can be selected for detailed characterization to capture
the attribute-property relationships both within and among the
composition regions.
Partitioning the composition region can be considered as a

composition clustering exercise where the shape, size and
location of the cluster in composition space is unknown. Most
clustering methods that employ distance and density metrics
have limited ability to identify arbitrarily shaped clusters, an
issue with ongoing research.17,18 Whereas, information theory
based metrics provide access to higher order statistics19−21

necessary for clustering/classification in complex data struc-
tures. Specifically, decision tree algorithms based on Shannon
entropy criterion have been successfully applied as a supervised
classification algorithm for unravelling crystal chemistry design
rules22 and discovery of materials.4 Genetic programming, with
its capability to identify arbitrary shaped clusters and perform
ergodic optimization, has been successfully applied for
supervised classification problems.23 These desirable aspects
result from its inherent concept of evolution of computer
programs structured as genetic trees by iteratively performing
selection, crossover and mutation operations. While other
evolutionary techniques such as genetic algorithms24 and
particle-swarm optimization25 have also been used for
clustering data, they use cluster variance-based fitness metrics
and hence are unable to capture nonhyperspherically shaped
clusters.
While the above approaches and several others have been

applied to (a) capture the function relating the input and
output variables26,27 and/or (b) cluster data based on input
variables28 and/or c) classify complex data structures in
supervised classification;29 there is limited work focused on
clustering based on the (dis)similarity in the relationship
between the input and output variables. Boric et al.30 developed
a multitree genetic programming based clustering approach that
optimizes membership of each data point in a specified number
of clusters by maximizing Cauchy−Schwarz divergence31 cost
function. Using this framework, we demonstrate a method that
effectively considers systematic composition-property relation-
ships as a metric of cluster membership.
In this article, we introduce the concepts of multitree genetic

programming to a materials discovery application. In our
approach, the genetic programming trees represent a function
space that maps the compositions and HiTp property
measurements to membership in a fixed number of clusters.
The clustering is defined over the composition space such that
the optimized trees cluster the compositions based on the
functional relationships between composition and measured

property. This method of clustering provides the ability to
select representative compositions from each cluster for further
investigation and characterization, resulting in information rich
experimental materials genomes with respect to composition-
characterization attribute-property relationships.

1.1. Traditional Approaches. Figure 1 shows a
composition-property map for a 5 at. % step ternary library

consisting of four property fields. The shapes of the property
fields are chosen to be nonhyperspherical, as is the norm in
HiTp data.6,32 To generate this synthetic data set, compositions
of each property field are mapped to a property value (also
called figure-of-merit (FOM)) using distinct polynomial
functions. Polynomial functions are chosen since they can
approximate common empirical composition−property rela-
tionships of polynomial, exponential and logarithmic
forms.33−35 The polynomial functions were chosen to provide
FOM variations by less than a factor of 6 to provide a challenge
for the clustering algorithm and demonstrate its utility for
property measurements with a small dynamic range.
Down-selection of samples from coarse-screening to finer

screening procedures is usually performed by choosing the top
z percentile of FOM values from the coarse screening
technique. Tracking the changes in material characteristics by
scanning from compositions with low FOM values to high
FOM values is an essential step toward understanding
chemistry-property relationships and tailoring chemistries to
optimize specific properties. Using a simple percentile cutoff

Figure 1. By partitioning a ternary composition space (with 5 at. %
step) into 4 property fields (top), a synthetic composition−property
plot is obtained by applying distinct polynomial functions to the
compositions of each property field (bottom).
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approach defeats this purpose by neglecting all compositions
with FOM values that do not exceed the cutoff. Further, the
value of z is typically chosen based on throughput matching
between successive screening techniques, and we choose values
of 5% and 10% for demonstrative purposes, as shown in Figure
2. In both the cases, compositions from property fields α and δ

in the synthetic data set (see Figure 1) would be filtered out
from further screening experiments. Additionally, the compo-
sitions selected in property fields β and χ are insufficient to
capture composition-property trends within these fields
because the selected samples occupy only a small composition
region of the respective property fields.
Another commonly used approach is to apply k-means

algorithm to cluster the data based on FOM values, and the 4
clusters created using the FOM data in Figure 1 are shown in
Figure 3 for 2 different inputs for k-means clustering. Using a
Euclidian distance metric in FOM space, the clusters are
scattered in the composition space, which is unreasonable for a
materials science property. Including compositions and
performing clustering on the composition−FOM space helps
force the connectedness of clusters, and to enact this strategy
the composition and FOM vectors were independently rescaled
to attain unit standard deviation and provide equal importance
to the variations in their values. This approach is successful in
forming fairly connected clusters but as shown in Figure 3, the
composition clusters fail to represent the property fields in
Figure 1.
The above examples elucidate the need for an alternate

approach that capture nonhyperspherical clusters and can

cluster based on composition−FOM relationships instead of
FOM values. As discussed earlier, information-theoretic
approaches provide access to higher order statistics and satisfy
the former requirement. The latter requirement can be met
with an appropriate implementation of genetic programming,
which has the ability to learn complex data relationships. By
combining these approaches, we develop a general framework
for identifying property fields that exhibit unique composition−
property relationships.

2. ALGORITHM AND DISCUSSION

2.1. Information−Theoretic Approach. Our objective is
to cluster the composition space in a ternary library based on
composition−FOM relationships. Alternately, we seek to
cluster the composition space such that the similarity of
composition−FOM relationships among different clusters is
minimized while similarity of composition−FOM relationships
within a given cluster is maximized. Using an information-
theoretic approach, our objective can be stated as minimizing
cross “between cluster” information potential while maximizing
self “within cluster” information potential. An attractive metric
that minimizes cross information potential and maximizes self-
information potential for a two class system is the Cauchy−
Schwarz divergence31,36 and is expressed as

Figure 2. Down-selection of compositions by selecting top z percentile
of compositions based on their FOM value (see Figure 1b). The
downselected compositions, colored red, are very sensitive to the
choice of z, which is usually fixed based on throughput matching of
successive experiments. The property field boundaries from Figure 1
are overlaid for comparison.

Figure 3. Clustering of the ternary composition library in Figure 1
using a Euclidean distance metric on the FOM space (top) and
composition−FOM space (bottom). Clustering using only the FOM
yields clusters with compositions scattered over the library, while
adding the compositions to the clustering metric yields clusters that
are mostly connected in composition space but do not match the
original property fields, whose boundaries from Figure 1 are overlaid
for comparison.
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The kernel width, σ, is an apriori specified parameter; n is
number of observations; d is the dimension of the data set.
Using eq 2, Jenssen et al.20 show that the divergence function

of eq 1 can be estimated as
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From Figure 1, every composition in the ternary library

belongs to exactly one property field. This relationship can be
imposed onto clusters using a membership value (imk) for data
point i in cluster k as

= ′ =

= ′ ≠

′

′

m k k

m k k

1 for and

0 for

i
k

i
k (4)

and im is defined as the vector of membership values for a data
point i over the set of clusters. Using these membership
notations and extending eq 3 to a c-cluster problem (c ≥ 2),
Boric et al.30 express the Cauchy−Schwarz divergence function
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However, in this objective function, the denominator scales as a
power of the number of clusters (c) whereas the numerator
varies comparatively very slowly with c [see Supporting
Information Figure 1]. Thus, as c increases, the denominator
which quantifies self-information dominates the objective
function, decreasing the importance of cross-cluster dissim-
ilarity.
Therefore, we introduce a modified form of Cauchy−

Schwarz divergence function such that the numerator and
denominator remain invariant to the number of clusters:
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This modified Cauchy−Schwarz divergence function is zero for
random clusters, negative for correlated clusters and positive for
divergent clusters (see Supporting Information Figure 2 for
details of verification of our cost function using a set of random
membership values).
Implementing eq 6 as the objective function in an

optimization algorithm is facilitated by defining a continuous
membership function, because the binary membership defined
in eq 4 does not provide a continuous Cauchy−Schwarz
divergence function with respect to alterations in membership
of a given sample in a given cluster. In addition, to accurately
cluster property fields the membership values should be based
on the composition−FOM relationships. Thus, we introduce
continuous membership values in the range [0, 1] by defining a
membership function mk (xf) for each cluster such that

imk = mk
(xf i) where “i” represents the ith sample in the composition
library. It is important to note that the probability distribution
functions for Parzen window estimation are defined on the
composition space, whereas the membership functions are

Figure 4. A schematic of a multitree chromosome in an MT-GP approach for 3 clusters and maximum depth 3. Abbreviations used: TN = terminal
node, LN = leaf node, RN = root node.
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defined on a combined composition and FOM space, with
coordinate represented as xf. The inclusion of FOM in the
parameter space enables the membership functions to represent
composition−FOM relationships. Additionally, by constraining
the membership values to sum to one, they can be regarded as a
set of posterior probabilities:

∑= | =
=

m xf P C xf m xf( ) ( ), ( ) 1k k
k

c

k
1 (7)

2.2. Genetic Programming Based Clustering. Genetic
trees are computer programs capable of learning complex
relationships present in the data. In a c-class data set, there are c
functional relationships between composition and FOM that
need to be learned or distinguished from each other. Thus, we
utilize a multitree genetic programming (MT-GP) framework
developed by Muni et al.37 and Boric et al.,30 such that each tree
learns the functional relationship between composition and
FOM for one of the classes in the data. In this representation,
each tree (Tk) is defined on the composition−FOM space
where the scalar Tk (xf) is used to generate membership values,
mk (xf), as described below. The problem thus reduces to
optimal identification of composition−FOM relationships by
MT-GP such that the resulting membership values maximize
the Cauchy−Schwarz divergence function (eq 6).
Our MT-GP algorithm was built on top of the framework

provided by an open source evolutionary algorithms module,
pyevolve.38 The algorithm is based upon the construct
illustrated in Figure 4, where each cluster is represented by a
hierarchical tree of root, leaf and terminal nodes in the MT-GP
chromosome. The leaf nodes and the root nodes are chosen
from the set of operators {+, −, ×, ÷}. The terminal nodes are
numerical and the domain includes the composition, FOM
parameter space and random integer constants in [0, 10]. For
the tree representing a cluster k, a sequence of operators
comprising a nested algebraic function defined on xf terminate
with numeric values Tk(xf).
Initialization. Chromosomes for genetic programming are

built by populating nodes with operators from the operator set
or data from the terminal set using the mechanism described
below. If the node is not a root node and node-depth is less
than a user-defined maximum depth, its value or operator is
randomly selected from the operator set and terminal node set.
For a root node, the operator is randomly selected from the
operator set. For a node whose node depth is equal to the
maximum depth, its data is randomly selected from the set of
terminal nodes. During the selection of terminal nodes, the
entire constant set enters the initial selection as a single
parameter and if the constant set is selected then selection of
the constant value is made randomly. Using the above strategy,
96 MT-GP chromosomes with four trees each were initialized.
Maximum Depth. The maximum depth of a genetic tree

dictates the complexity of function that it is capable of learning.
A small value of maximum depth may lead to inaccurate
capture of the complexity in the data. A large value of maximum
depth may result in very slow convergence of the MT-GP.
Thus, this parameter needs to be carefully selected based on the
properties of the data set. As an example choice of functional
complexity, Xiajing et al.35 used a third degree polynomial to
relate chemical activity to composition for fuel cell materials. In
general, third degree polynomials are sufficient to capture a
function between composition and FOM, and we observe that a
maximum depth of 4 is sufficient to capture a third order

polynomial mapping between composition and FOM using the
root, leaf and terminal node architecture described above.

Selection. At the beginning of every nonzeroth generation of
genetic programming, every individual is populated by selecting
the best chromosome out of tp randomly selected chromo-
somes from the previous generation. Where tp, the tournament
pool size, is a user defined parameter that defines selection
pressure (here, tp = 2). A large value of tp results in premature
convergence. Thus, a relatively small value of tp compared to
the number of chromosomes is recommended to exploit the
exploratory capabilities of genetic programs. Additionally, the
best five individuals from the previous generation are always
selected for the next generation as part of an elitism retention
strategy. The new population then undergoes crossover and
mutation operations which allow tailoring of the genetic trees
to learn the composition−FOM relationships.

Crossover. Crossover in a MT-GP approach differs from
crossover in traditional genetic programming since a crossover
between any two selected parent chromosomes with “c” trees
can occur using cC2 pairs of parents because the kth tree in
chromosome “i” does not have to crossover with the kth tree in
chromosome “j” given that they may not be attempting to learn
the same composition-property relationship. Thus, pairs of
multitree chromosomes are selected as parents for crossover
with a probability pcross (here, set to 1). For each pair of
multitree chromosomes selected as parents, pairs of trees are
randomly selected with one tree from each of the parent
chromosomes contributing to the pair such that every tree in
the parent chromosomes is present in exactly one pair. A
crossover probability of 0.75 is usually used as a balance
between exploratory and exploitative capabilities of traditional
genetic programs. In the case of MT-GP, rapid convergence to
a robust solution is facilitated by using crossover probably low
enough to avoid complete crossover of all tree-pairs and high
enough to yield frequent crossover events. To achieve this
balance, we parametrize the crossover probability for each pair
of trees using a base probability (ptreecross) and probability
multiplier (pcm) such that the probability for crossover of the
kth randomly selected pair of trees for a given pair of parent
chromosomes is ptreecross × (pcm)

k−1. Values of ptreecross in the
range 0.6−0.8 and pcm in the range 0.8−1.0 were found to be
reasonable estimates, although further research is required to
identify optimal values of these parameters using various case
studies. In this manuscript we use ptreecross =0.7 and pcm =0.9.

Mutation and Termination. Generally, probability of
mutation is defined uniformly for all the chromosomes in a
genetic program. However, this provides the same mutation
frequency for simple and complex trees. Learning a complex
composition−FOM function using a complex tree representa-
tion requires more exploration compared to that required for
simple functions/trees. Thus, we consider probability of
mutation (pmut) for every branch. This allows larger trees to
undergo a greater frequency of mutation than less complex
trees. Here, we choose pmut = 0.001 and we notice that this
results in an average mutation rate per tree of approximately
2.5% for trees when maximum depth is 4. The MT-GP
algorithm was terminated if a change in Dcs less than 0.02 was
observed over 200 iterations. Typically, convergence was
achieved in less than 2000 generations using 96 chromosomes.
Using 24 cores within a computing node on Edison (https://
www.nersc.gov/users/computational-systems/edison/
configuration/) in a shared memory model, typical calculation
times for each generation were 0.3 s for the synthetic data set
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with 231 samples and 0.7 s for the experimental data set with
5429 samples. The algorithm computation time scales
sublinearly with number of samples. The evaluation of the
objective function is the rate limiting step for large number of
samples, and the crossover and mutation processes, which are
dependent only on the number of chromosomes, become rate
limiting for small number of samples. We observe a similar
computing time for near 100% CPU usage on a 4 processor (8
threads) Intel Core i7-3770 CPU.
2.3. Calculating Membership. Boric et al.30 related the

output of the trees Tk(xf) to membership values mk(xf) using a
Sigmoid transformation followed by normalization:
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+
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Since the output of each tree represents a distinct function in
composition and FOM, different trees result in outputs of
varying magnitudes. This could result in membership values
that are skewed toward a particular function. To avoid this, we
obtain relative memberships within each class by first
normalizing the output of the trees Tk(xf) with respect to the
minimum and maximum values of Tk(xf) and then normalizing
the relative memberships such that mk(xf) represent posterior
probabilities (eq 9).
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The most representative class label set k(̑x) is computed using

̑ =k x m xf( ) argmax( ( ))
k

k
([10])

Note that the composition vectors and the FOM vectors are
converted to unit standard deviation prior to the MT-GP
analysis. Unit standard deviation ensures that variations in each
feature vector are given equal importance.

3. RESULTS AND DISCUSSION
3.1. Synthetic Data Set. Figure 5 shows the optimal

membership set obtained after clustering the data set shown in
Figure 1 assuming the presence of four clusters. Here we
choose a Gaussian Parzen window size σ = 0.17 at. %; based on
the ability to obtain crisp, compositionally connected and
robust membership values. Figure 5 also shows the clustering of
compositions based on their maximum membership class
(k(̑x)). Since the number of property fields in the synthetic
data set and the number of clusters used in the MT-GP
algorithm are the same, the association of a synthetic property
field and calculated cluster is easily made by evaluating the
maximum intersection of the composition points. The clusters
in Figure 5 are colored corresponding to the association of
property fields in Figure 1, and comparison between these
composition maps reveals 14 misclassified samples, approx-
imately 8% of the data points. The misclassified samples lie on
the boundaries between different property fields, where the
continuous membership parameters show partial membership
in each of the neighboring fields. That is, the MT-GP algorithm
produces the correct property fields with the boundaries
blurred by 1 or 2 composition intervals.

In the Supporting Information, we show that the optimal
clustering obtained using Sigmoid function based trans-
formation suggested by Boric et al.30 has poor agreement to
the synthetic property fields. We also highlight the loss of
information during this transformation to elucidate the need for
linear scaling based transformation (eq 9) for the MT-GP
approach to accurately capture property fields.

3.2. Experimental Data Set. To demonstrate structure−
property relationship clustering on experimental data, we use a
combinatorial electrochemistry data set from the recent
discovery of a family of electrocatalysts for the oxygen evolution
reaction.39 The metal oxide composition library covers all
possibly mixtures of Ni, Fe, Co and Ce with 3.33 at. %
composition steps, corresponding to 5456 samples. A
quintessential FOM describing the performance of electro-
catalysts for solar fuels applications is the overpotential (η)
required to deliver a geometric current density of 10 mA cm−2,
where lower values correspond to higher performance. This
FOM is mapped over the pseudoquaternary composition space
Figure 6, where the (Ni−Fe−Co−Ce)Ox composition space is
mapped not as a tetrahedron but instead as a series of Ni−Fe−
Co pseudoternary triangles with increasing Ce concentration.
With approximately 0.5% of missing data, the 5429 FOM values
and corresponding 4-component compositions are used as the
source data set for the MT-GP algorithm with 4 trees, each with
maximum depth 4, and σ = 0.17. While the precise number of
clusters, and hence number of MT-GP trees, required to
capture all the features in the data set are unknown, we choose

Figure 5. (top) Maps of the membership of each composition in the
four optimized MT-GP trees. (bottom) The four clusters obtained by
taking the maximum membership for each composition with the
property field boundaries from Figure 1 overlaid for comparison. The
14 misclassified compositions are marked by red borders.
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4 clusters to demonstrate the capability of our algorithm to
capture important composition−FOM relationships.
Since division is one of the genetic operators and

compositions along ternary faces, binary lines, and unary end
points have at least one composition component as zero, all the
compositions where shifted by Δ = 0.01 at. % to avoid division
by zero. For the synthetic data set described above, binary
compositions were excluded to avoid this issue. The member-
ship values for the 4 trees are shown as tetrahedral composition
plots in Figure 7a, where only the points with membership in
excess of 0.2 are shown and the points are plotted with 70%

opacity to facilitate the visualization of the compositional
clusters. Using maximum-membership to define representative
clusters, the stacked-ternary representation of the 4 clusters is
shown in Figure 7b and can be directly compared to Figure 6.
For this experimental data set, as with practically any

experimental data set in high-order composition space, there is
no known optimal solution for composition clusters. For this
data set, 2 unique, highly active catalyst composition regions
have been identified and classified through additional electro-
chemical characterization.40 The recently discovered catalyst
composition region contains little to no Fe and approximately

Figure 6. Overpotential (η) for oxygen evolution reaction at 10 mA cm−2 current density for 5429 catalyst compositions on a 3.33 at. % step (Ni−
Fe−Co−Ce)Ox quaternary library.

Figure 7. (a) Quaternary plots of membership values in four optimal clusters and (b) mapping of the most representative cluster onto quaternary
compositions in a (Ni−Fe−Co−Ce)Ox library.
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50% Ce (region 1). Traditional mixed-transition-metal oxides
with at least approximately 50% Ni comprise the low-Ce region
of highly active catalysts (region 2).
Possible metrics for evaluating the clustering result include

comparison with other measured properties such as crystallo-
graphic phase. As described in ref.,41 these mixed metal oxides
are X-ray amorphous and the greatest understanding of
composition-property relationships in this system comes from
extensive characterization of composition from Region 1,
Ni0.3Fe0.07Co0.2Ce0.43Ox. The characterization experiments
reveal that the behavior of this catalyst is markedly different
from the compositions in region 2 because of the existence of a
biphasic nanostructure.
To facilitate the interpretation of the clustering result of

Figure 7, we consider the distribution of FOM values that exists
within each cluster. The 4 histograms are shown in Figure 8

and clearly demonstrate that the MT-GP does not cluster by
FOM value, as each of the 4 clusters contains samples with a
wide range of FOM values. The 2 clusters that contain most of
the best catalysts (lowest FOM values) are α and χ. The α
cluster covers most of the Ni−Co rich compositions with Ce
concentration in excess of 20 at. %, in excellent agreement with
Region 1 described above. Likewise, the χ cluster covers Region
2 and is comprised of most Ni-rich compositions with Ce
concentrations no more than 20 at. %. The identification and
separation of these composition regions demonstrates that the
MT-GP algorithm identifies the same composition clusters
noted in experimental reports. There is no experimental basis
for evaluating the 2 additional clusters, although we may draw
insight from their compositional coverage. Composition cluster
δ contains many Co-rich compositions, and composition cluster
β traverses the Fe−Co−Ce ternary face, possibly signifying the
unique behavior of Ni-free catalysts. Given the presence of
experimental noise and limited dynamic range in the measured
FOM, the excellent clustering results suggest that the MT-GP
algorithm can be successfully deployed for automated down-
selection routines, for example by choosing representative
samples from each cluster or choosing samples that span the
composition regions of the two high-performance clusters.
3.3. Parameter Optimization. The free parameters in our

clustering approach are the Parzen window size (σ) and the
number of clusters (c). From a coarse sensitivity analysis on the

synthetic data set, we observe that σ = 0.1 is less than optimal
window size and is likely to result in noisy membership
functions. Whereas, σ = 0.3 misrepresents the features in the
data set (see Supporting Information Figure 4). This also
indicates that σ = 0.42 obtained from Silverman’s rule of thumb
in accordance with the protocol proposed by Jenssen et al.20 is
inapplicable for this data set. While a value of σ = 0.17 captures
the complexities in the synthetic data set, further sensitivity
analyses is required to identify an acceptable range for σ to
enable automated execution of the MT-GP algorithm.42

Additionally, automatic detection of the number of clusters is
required to easily adapt this algorithm to experimental data sets,
where no prior knowledge on the number of clusters is
available. The requirement for a priori specification of the
number of clusters is a limitation common to many clustering
algorithms. However, the modified Cauchy−Schwarz diver-
gence function introduced in eq 6 allows us to quantitatively
compare the divergence information obtained for various
numbers of clusters, motivating further research for automatic
determination of the optimal number of clusters.
Additional future work will incorporate different approaches

for parametrizing composition space with consideration of the
implications for standardizing the source data and defining the
objective function. In the approach described above, the
transformations from discrete data to probability distribution
functions and the connectedness of clusters employ the
Gaussian kernel defined in Euclidean space. By treating
composition variables as Euclidean coordinates, the algorithm
successfully identified clusters in the composition space,
although with apparent artifacts on the edges of the
experimental composition space. For example, composition
cluster χ in Figure 7 is a compact cluster of Ni-rich
compositions with the exception of an outcropping of
compositions along the binary Ni−Ce and Ni−Co lines,
possibly affected by composition shift using offset parameter Δ.
Clustering of these low-order compositions is sensitive to the
choice of Δ, and in general, the application of non-Euclidean
compositional distance metrics needs to be explored.
While there is a need for further research to develop a

nonparametric MT-GP based clustering algorithm that
ultimately provides automatic down-selection of compositions
for combinatorial experimentation, this article using informa-
tion theory, a modified Cauchy−Schwarz divergence function
and multitree genetic programming establishes a protocol for
identifying distinct, complex composition-property fields from
combinatorial materials science data. This methodology
presents a significant step toward developing information-rich
experimental materials genomes.

Summary. High-throughput experiments generally produce
a figure of merit for each sample in a material library. Clustering
samples by a measured performance metric does not facilitate
the selection of samples required for establishing composition-
property relationships. We present a new algorithm based on
genetic programming and information theory which clusters
samples by the functional relationship between composition
and figure of merit (FOM). The membership of the samples in
a given cluster is represented by a genome of algebraic
operations on the source composition and FOM data, where
the algebraic operations are indicative of the measured
composition−FOM trend in a particular composition region.
By implementing this algorithm in a sample down-selection
scheme, the information value of the sample subset can be
maximized with respect to understanding composition-property

Figure 8. Histograms of the FOM for the 4 optimal clusters.
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relationships, guiding data-driven material discoveries. We
demonstrate this approach by clustering composition regions
with distinct composition−FOM relationships in a ternary
synthetic data set, where the synthetic composition clusters are
well-reproduced by the automated algorithm. By applying the
genetic program clustering to 5429 measurements of oxygen
evolution electrocatalytic activity in the (Ni−Fe−Co−Ce)Ox
composition space, the 2 distinct catalyst composition regions
from the literature are correctly identified. The successful
application of the algorithm to both synthetic and experimental
data sets demonstrates its utility for the development of
autonomous down-selection schemes for rapid mapping of
composition-property relationships.
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